
Correlations in multicomponent systems with application to the Emery model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 10317

(http://iopscience.iop.org/0953-8984/6/47/015)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 21:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. Malter 6 (1994) 10317-10330. Printed in the UK 
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Abstract. A new c l a s  of variational functions is proposed to study the correlarions and charge 
Ructuadons in multicomponent systems It is applied to the Emery model of the CuOz plane 
of a high-temperature superconductor. A correlated state is constructed by making use of the 
local unitary uansformtions acting on the uncorrelated singleband Hartr&Fock function. The 
transformations perform the p d  hybrididon depending on the number of holes on the cluste~s. 
each containing one d orbital and the appropriate Wanuier cambination of p orbitals. The non- 
perturbalive single-bmd Hamiltonian is obtained. It is shown that the band approach to u w i n g  
the mansformed Hamilkmian is quite adequate. In this way the correlated paramagnetic state 
with large interclusler fluctuations and lhe antiferromagnetic (AF) state have been obtained. The 
hole localization on clusters in the M state and the decay of AF ordering upon doping is traced. 

1. Introduction 

For a long time, and more recently in connection with high-temperature superconductors 
(HTSC), a variety of successful methods have been proposed to describe the electronic 
correlations in strongly correlated materials. Some of them that originated from Hubbard’s 
work [1,2] are now extended over various cluster-band models [3-51. They use the 
decoupling of the equations of motion for electronic operators [ I ,  2-61, 

Direct construction of the variational many-electron wavefunction with correlations has 
been achieved by Gutzwiller and others [7-11] or in the slave-boson technique [12, 131. In 
both methods uncontrolled approximations are introduced in calculations of matrix elements 
or in the account of the constraints. 

A number of studies of the I -J  model 114-181 have used expansions in t / U  where f 
is the hopping integral and U is the on-site interaction. For the CuOz plane of an HTSC 
such an expansion leads to separation of the copper spin system and that of oxygen holes. 
Then the ground state (GS) of the undoped system corresponds to spins localized on copper 
and the oxygen extra holes are bounded with d holes in singlet states (Zhang-Rice singlet 
1151 or more complicated objects [17.18]). Practically, the parameters of such expansions 
(4t/Ud, 4t/lSsl) are not smaI1; here SE = Ed - E ~ .  

An improved expansion has been proposed recently [ 19,201 that is convergent even at 
S E  + 0. It is based on the cluster perturbation method in which the main intracluster part of 
the p-d and p p  bond interactions has already been taken into account in zero approximation 
and the cluster (or cell) consists of the d orbital of Cu and the corresponding Wannier 
combination 1211 of oxygen p orbitals. In the perturbative approach the construction of the 
effective spin Hamiltonian and the single-band Hamiltonian for additional holes requires 
the definition of the basis of zero approximation (the ground manifold) [ 19,201. Such a 
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ground manifold includes [4,5, 19,201 the singly occupied hybrid orbitals of clusters in the 
insulating case and the additional lowest singlet states of clusters with double holes at some 
doping. However, there is no unique self-consistent way to choose the ground manifold in 
the perturbation method in the case of a doped insulator, and the problem of treating the 
effective Hamiltonian remains unsolved as yet. So it may be useful to try an alternative 
approach for treating the correlations and charge fluctuations in multicomponent systems. 

The present work is devoted to the variational non-perturbative study of correlations 
and charge fluctuations in the Emery model in the frame of a modified band approach. 
A new type of correlated variational wavefunction Y is constructed by use of local 
unitary transformations acting on the single-band Hartree-Fock (HF) function Q, or on the 
antiferromagnetic (AF) function of the unrestricted HF approach. So we take 

A A Ovchinnikov and M Ya Ovchinnikova 

Y = W O  

W = n w "  
n 

where W is the product of local unitary operators W. acting on the states of different 
non-overlapping clusters (d", a,,]. Each cluster is just the same cluster as has been used in 
the cell perturbation method [ 19,201. It includes the strongly correlated d orbital and the 
appropriate Wannier combination a, of the p orbitals [21]. 

After the transformation, the total Hamiltonian fi = W + H W ,  consisting of the 
intracluster part and the pair intercluster interactions, is represented in the form 

It acts i n  the space of the original function Q,, Here each of the transformed operators 
in = in or or Q. refers to the nth cluster and is connected with the corresponding 
components of the original Hamiltonian H by the equation 

t" = WTLnWn. (4) 

Our aim is to show that even at large U, the single-band NF function Q, after the 
transformation can provide lower energy than the states of localized type with one hole on 
each cluster. This allows us to apply the very convenient and well elaborated band approach 
to the new problem determined by the transformed Hamiltonian f?. In particular, the use 
of the singleband AF function allows us to find in a self-consistent way both the degree of 
hole localization and intercluster charge fluctuations. It also allows us to consider metal-like 
systems with doping on an equal footing with insulating undoped systems. 

The function ( I )  differs from that of Gutzwiiler's ansatz [7,8]. In the latter a non- 
unitary transformation of the HF function suppresses the configurations with doubly occupied 
strongly correlated sites. In the function (I)  a unitary transformation W redistributes the 
hole density between the weakly and strongly correlated orbitals and creates the singly and 
doubly occupied states of d orbitals in the necessary proportion. 

The outline of this paper is as follows. In section 2 the unitary transformation operators 
referring to one cluster with two orbitals are defined. In section 3 the singleband mapping 
of the simplified Emery model by the unitary transformations is performed. The accuracy 
of such mapping is estimated in the limit of non-interacting holes (section 4). Section 5 
presents the results for the correlated paramagnetic (PM) and A F  states. The hole localization 
and intercluster charge fluctuations are discussed. 
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2. Unitary transformations for the two-orbital cluster 

Consider an isolated cluster with two orbitals described by the creation operators a: and 
d:. 

Any operators acting on the function of the cluster may be expanded via the complete 
set of products of the Hubbard operators Aij  and Dim [Z. 31 referring to a and d orbitals 
respectively: 

with 

Here U = a, is a spin index; equivalent notation U = 1,2 will be used below; PO, P2 or 
P,, are the projection operators to the states with empty and doubly occupied a (d) orbital or 
the projection to the state of one particle with spin U at the orbital. The known properties 
of operators A;, (or Di,) are 

4 

A t  El = Aji Aij Aki = 6jtA;l  Ail E Po + P? + P, + Pp = I. (7) 
; = I  

The local unitary operator W acting on the two-orbital cluster (d, a] is generated by 
anti-Hermitian operators Zi: 

Each of the mutually commutative operators Zi acts only on a state with definite number 
(i) of particles on a cluster and redist-ibutes the amplitudes in that state. The operator Wz 
acts on the singlet component of a state with two particles. Explicit expressions for W; 
via Ai j  and D;, are given in the appendix. Operators W corresponding to the different 
non-overlapping clusters commute with each other. 

At CY = U = U = 0 = y the operator W(u, @,U.  U) takes the form 
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It transforms an arbitrary HF state into a new uncorrelated HF stale with different 
hybridization of p and d orbitals. The use of operator w(01, U ,  U ,  p )  of generalized 
hybridization with 01 # p # U # L' is needed to obtain the correlated state. 

It is important that any of the transformed operators E. = W$LnWn (and in particular 
the constituents in, in, Qn of the transformed Hamiltonian (3)) can be represented in the 
form 
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in = xC(ijkI)A;,,Dk,. (14) 

Here the coefficients E of the expansion are connected by linear relations with the same 
expansion coefficients of the corresponding original operator L,, and the explicit expressions 
of the transformation matrix via variational parameters 01, U. U ,  ,9 have been obtained. 

3. The one-band mapping of the Emery model 

Consider a simplified model of the CuOz plane in which the on-site interaction of holes on 
Cu only is added to the linear Emery model: 

H = H,, + Udnf,,n:-, (15) 
n 

Here d and p = ( x  or y] refer to the d orbital of copper and to the px, pr orbitals of oxygen; 
Cnm = f l  are defined by the signs of the orbitals. Following [19,20] we rewrite H via the 
basis {d.a,c,] of d orbitals and appropriate symmetric and antisymmetric Wannier orbitals 
[21]: 

a n n  + = N-112 x e - i k " n , + ,  C"" t = ~ - 1 / 2  C e - i k n &  (17) 
k k 

Here 

a,, + -  - ( - e x w &  + erSryL)/Fk c;" = (exx,x:n + ersxytm)/,)/Fk (18) 

with 

e,(y) = iexp(ikX(,)/2) 
(19) 

SX@) = sin(k,(,)/2) S E  = Ed - Ep. 2 2 112 ,)/Fk = (Sx + Sr) 

In the basis (d.a,c,) the Hamiltonian (15) takes a form that is convenient for local 
transformations: 

H = C[Edn~,+Epn~,+~Udn~,nf_,+2f(d,+,a,,+HC)]+2t F(n-m)(d,+,a,,+HC) 
n.o "#In n 

(20) 
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Here Fk is determined by equation (19). The term &, is already omitted in H since the 
c band decouples from the a-d problem of interest; it refers to the non-bonding p band. 

In order to obtain an approximate single-band description of problem (2.0). we make 
the transformation of the single-band function 0. For example, let 0 be defined in the 
subspace of weakly correlated a,, orbitals, so that 

II, = W W  an = I@(a+)o). (21) 

This is one possible way to map the multicomponent multiband system by the single-band 
model. 

Note that each of the possible components Ia&O) or l u ~ + ~ ~ ~ O )  in the original function 
0' is transformed by W, into the whole spectrum of all the possible single-hole states or 
the singlet double-hole states of the nth cluster, in particular the states with the occupied d 
orbital. 

The transformed Hamiltonian W + H W  acting in the space of arbitrary functions W' in 
the a subspace is a projection of the modified Hamiltonian (3) on the states with empty d 
sites: 

f? = S p d { D ~ ~ f i ]  = + E C n m ( A , k ' ) & 6 : , m .  (22) 
n#m 

Here each of the operators L* = (2, l?: or &:) in the a subspace is derived from the 
representation (14)  of the corresponding transformed operators i in the full a-d space. It 
is expressed in the form 

i . j  

via the same coefficients 5 as in equation (14) .  

takes the form 
As a result the transformed Hamiltonian in the subspace of the arbitrary function 

Here 

vo V u d  f K i 6 E  4- 8tFohi 

Ea = ; [ ( E d  4- E P )  + KoSS + 8tFohol 

and the expressions for KO. EO, + I ,  70. 71, ho, hl and v via the parameters 01, U and U of the 
transformation are given by equations (AI 1) in the appendix. 

Thus, the local unitary transformations being common for all the clusters allow us to 
reduce the Hamiltonian of multicomponent system (15), (16) to an analogue of the Hubbard 
one without using the expansion in 4 t / U ,  4t /&  or in intercluster interaction. The density 
of particles for the new problem is the same as in the original one. We expect that, choosing 
the optimal variational parameters, one can get good accuracy of the approach. In the next 
section we study the accuracy of the single-band mapping of the Emery model with the use 
of local transformations in the limit of non-interacting particles. 
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4. Estimation of the accuracy in the non-interacting holes limit 

The exact wavefunction lllex and the energy Ha of the problem (16) with Ud = 0 can be 
represented in the form 

A A Ovchinnikov and M Ya Ovchinnikova 

The index F in (25), (26) defines the range of k variations inside the Fermi boundary and 
Z,(y,a ,d)  is defined by equation (13). 

For the same case u d  = 0 the optimal locally transformed single-band function and 
corresponding minimal energy per unit cell are 

F 
A = i n s &  2 B = 2fN-I Fk 

k 

Here Fk is defined by equation (19), C‘ is the sum over k inside the Fermi boundary, and n 
is the hole concentration. The optimal local transformation here corresponds to parameters 

ff = U  = U  = y = ;arccot(A/B), 

The error S H  = H ( y )  - Hex for the energy appears to be sufficiently small. For 
example, for the hole concentrations n = 1 and 1.5 one gets S H / r  = 0.0018 and 0.0055 
at 6& = -2t, or S H / r  = 0.004 and 0.012 at SE = -41. At SE = 0 the approximate 
function (28) and energy (29) coincide with exact quantities (U) and (26) since in that case 
yk = const = yo = n/4. Even at large hole concentration n = I the 6 H  values are much 
less than the energy gain due to the correlations at U, # 0. Note that the transformed 
single-band function cannot describe the admixture of the triplet double-hole states and of 
the states with three holes on the cluster. But the weights P’ and of these stales in 
exact function (25) are also negligibly small. For example, at n = 1 these weights are 
PT = 0.13 x lo-’ and P2 = 0.9 x 

Such a high accuracy of the locally transformed single-band state is due to the 
multicomponent character of the model and to the choice of the cluster basis with appropriate 
Wannier orbital. A concentration n of about one hole per unit cell means in fact n, E 0.25 
of holes with definite spin per orbital. This leads to slight dependence of yk on k inside 
the Fermi boundary in equation (25) and provides high accuracy of the local transformation 
approach. 

at 6& = -2t and they vanish at SE -+ 0. 
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5. The results for the correlated PM and AF states: hole localization and interduster 
charge fluctuations 

The aim of further study is to answer the question of whether the band approach can be 
adequate in treating the locally transformed singleband Hamiltonian ( 2 2 )  or it is necessary 
to start from the localized limit and corresponding perturbation approach. This question is 
very important since the band mean-field (or HP) approach is a well elaborated one and it 
allows us to obtain quantitative results by a non-perturbative self-consistent procedure as 
opposed to the perturbative methods [ 19,201 based on the wavefunction of localized type. 

Consider first the undoped system with n = 1 and compare the average energies H 
calculated with the functions of both types (localized versus non-localized ones). 

A function of the first type @lot is composed of singly occupied local orbitals a, with 
some spin distribution 

Since each cluster in Q has exactly one particle, the energy Hioc per unit cell depends on 
the parameter a only. Minimization over (Y yields 

Hioc," = $ ( E d  4- E P )  - [ ($SE)'  -b 4t2F~]1' ' .  ( 3 2 )  

Here FO and S E  are defined by equations (19). 
At a particular value a = -x /Z  the function (31) and corresponding energy turn into 

@iOc(a = - x / 2 )  = n 10) H i d N  = &d. (33)  
n 

Just such a state has been used for the undoped case in early works [14-18]. However 
Hjm has a minimum at the value a determined by the equation tan(2cu) = - 4 t F o / S ~ .  The 
degenerate states (31) with W = W(a) form the ground manifold in the cell perturbation 
approach [19,20]. A large part of the p-d bond energy is already taken into account here 
since each hole is localized on the lower hybrid orbital of the cluster with appropriate 
Wannier function a,. This provides a considerable energy gain in comparison with the 
energy of state (33) with localization of holes on d orbitals only. 

The second type of solution is based on the HF function a' in the correlated function 
of paramagnetic state 

Index F means the product over k inside the Fermi boundary. 
Note that for the state (34)  the probabilities of each cluster to have one, two or zero 

holes are PI = n ( 2  - n ) / 4 ,  P2 = n 2 / 4  and Po = (2 - n)Z/4, which are 0.5. 0.25 and 0.25, 
respectively, for the undoped case. It means that the state (34) implies large intercluster 
charge fluctuations forbidden in the localized state. 

The energy HPM = ( H )  corresponding to trial function (34)  is 
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Here 
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F 

pm N-'  Ceikm PO = n P  41 = (to+ wh)(qo + pori) 
k 

n is the hole density and CF means summing over k inside the Fermi boundary. We have 
verified that the spectrum Ek of linearized Hamiltonian (H' )L  exhibits perfect nesting, i.e. 

(36) 

The Fermi hou,ndary is uniquely determined by the hole density according to the equation 
z ( k ~ )  = ZF,(n). p u s , ,  the problem is reduced to the minimization of HPM (34) over a, U ,  U. 

It should be emphasized that the energy HPM obtained in thc HF approximation for 
.optimal modified Hhi l lon ian  l?(a # U # U) appears to be considerably lower than the 
&qergy of the origi.nal problem in  the HF approximation. The latter is very close to energy 

.= E ( z )  depends o n  the 'radial' characteristics of momentum k only: 

z F (2  + cgsk, +cos k, ) /2 .  

H ( Y )  = ( * ( Y ) / H l * ( Y ) )  (37) 

for the optimal function of type (28) without correlations (a = U = U y).  
Now we.cgn find the energy HAF of the correlated AF slate 

qAF = bVaAF(a) (38) 

constructed ,on the hasis gf the one-determinant AF state aAF(a) of the band approach in 
the a subspace, 

H A F  = (*AF/ H I WAF) = (@AFI 8 I @ ) ,  

The usual mean-field treatment of the modified Hamiltonian gives 

(39) 

Here HPM depends on pm only and is determined by equation (35), rn = <" = 7 1  
for U = &I/?.  and the values pm = (Em)a and 6, = (&,)a are the averages over OAF of the 
corresponding operators 

IQ the ,site representation these operators are 
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The values 2po and 280 determine the mean density of holes and the spin density on the 
cluster. 

The linearized Hamiltonian of the correlated AF problem 

determines the self-consistent equations for pm and 6,. A typical property of the system 
with nesting is a dependence of Fermi surface on one variable (36) only. This facilitates 
the numerical solution of self-consistent equations. For undoped AF insulator (n  = 1) there 
is additional symmetry: all pm with even m, + m y ,  except p a ,  are equal to zero. 

Figure I presents the dependence of the optimal parameters U, U, v of local 
transformation in correlated PM wavefunction (34) on the on-site interaction (/d for various 
values of 8& = 0, -2t, -4t at n = I .  The values q, U, U appear to be very close to the 
intracluster parameters 010, UO, vo that minimize the intracluster part h, of the Hamiltonian; 
the corresponding operators W, (010) and Wz(u0, UO) transform the states ia,'O) QC [U,$;~O) 
to the lowest states of the cluster with one and two holes respectively. At SE = -2 
the values (YO. UO, uo are presented in figure 1 by broken curves. At + 0 the optimal 
parameters U = U = v correspond to the uncorrelated state (@). At U, -+ 00 one gets 
U -+ 0 and the weight of doubly occupied d orbitals 

P," = (n",nd_,) = u(ntnS,), (44) 

tends to zero. Here U is given by equation (A1 1) and (. . .). means the averaging over 
Q H F ( a ) .  The dependences of Pi on Ud for the conelated and uncoqelated states. (34) 
and (28) are presented in figure 2. Correlations suppress the doubly occupied, d states but 
produce little change of the total density of holes on Cu. Note that the weights of the 
double-hole and empty clusters (as opposed to the weights for the d orbitals) are constants 
and equal to 0.25 for function (34) at n = 1: the correlations in the state (34) d o  not 
suppress the intercluster charge fluctuations. 

The ground-state energies for various trial functions are presented, in figure 3 for 
SE = -2t, n = I and 0 e Ud < 101. The full curves marked by PM and 1 correspond 
to energies H ( u ,  U, U) and H ( y )  for states with and without PM correlations, respectively; 
the broken curves AF+PM and AF correspond to the same quantities for the correlat& or 
uncorrelated AF states (01 # U # U or U = U = v z y ) ,  respectively. The horizontal line 
refers to the energy Hloc corresponding to function (31), which describes localization of 
holes on lower hybrid orbitals of clusters. It is worth noting that the ground state (32) of 
zero order in t corresponds to much larger energy H = E,J = -2 at t = 1. Absolute values 
of H are given for sp = 0. 

It is surprising that there is a wide range of parameters where 

HPM <Him. (45) 

For example, i t  is true for all Ua up to lot at 6& = 0, or for Ud e 6t at SE = -2t, or 
for Ud e 2t at 68 = -4r. This means that the energy per unit cell of the qharge-.Uansfer 
intercluster fluctuations, 

A O.ZS(E2 + Eo - 2El )  > 0 
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1.33 I 0.201- 

1.1 
6l 
fY 
r0.9 
W z < 
50.7 
0. 

Figure 1. The U,j dependences of generalized hy- 
bridization p m e t e r s  (I, U ,  v of correlated wwefunc- 
lion (34). In each bunch of curves the higher, central 
and lower curves refer to -(I, --U, -U respectively and 
bunches 1-3 correspond lo 6~ = 0. -2, -4 for the hole 
density 11 = 1 per site. Broken curves correspond to 
parameters -W. -MO, --U(, minimizing the inmduster 
energy only. 

c 
0 

- - .  

0 2 4 6 8  
0.00 

Ud/ t  
3 

Figure 2. The probabilities (Pd of double omupation 
of Cu by holes as a function of Ud cdculaled 
with the PM correlated stales (34) (full curves) and 
with approximate unconelated functions (28) (broken 
curves) al n = 1. Curves I .  2, 3 Correspond to 
Sell = 0. -2. -4. 

Figure 3. The told energy per unit cell for model 
Self  = -2, n = 1. Curves PM and 1 correspond 
lo s w s  (34) or (28) with or without PM correlatiorw. 
Curves A F t P M  and AF refer to similar stntes with AF 
ordering. The ho~zom.l line is the energy of localized 
state (31) after minimimtian over U. 

Figure 4. The U,j dependences of the dielectric AF gap 
at n = I for 8 E / f  = -2. Curves I and 2 refer 10 the 
correlated A W P M  Or uncorrelated M states. 

may be less than the absolute value of negative intercluster part of the pd  bond energy, 

TPM 8tVo(to + SI~O)(VO + m p o )  00 = N k(Fk - Fo). 

Here Ei are the lowest energies of the cluster states with i holes and the parameters 01, U ,  U 
in the correlated PM state are close to their intracluster values ao, U O ,  UO. 
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Thus we come to the conclusion that the band approach for treating the transformed 
single-band Hamiltonian can be used successfully as a basis for constructing the insulating 
AP state of an undoped system. It has some advantage over the cell perturbation method 
[19,201. It allows us to obtain in a self-consistent way the degree of localization and can 
be easily applied to metal-like doped systems. 

The correlated AF state has been obtained by the solution of the corresponding self- 
consistent equations at any parameters 01, U, U and by the subsequent minimization of energy 
(39) over them. Optimal values 01, U. U for the AF state are close to those for the PM state. 
For example, at 6~ = -2t ,  U = 7t the values 01, U ,  U are 1.012, 0.775, 0.493 and 0,980, 
0.774, 0.475 for the AFtPM and PM states respectively, and they are close to the intracluster 
parameters (010, UO, uo) = (1.025,0.765,0.439) that minimize the cluster Hamiltonian h,. 
Thus the PM and AF correlations can coexist. 

At n = I the energy HAF+PM of the correlated AF state is always lower than both fiOc 
and HPM for the states (31) and (34) (see figure 3). For example, at U, = 7t the values 
(fioc, HPM, HAF+PM] are (-1.916, -2.149. -2.170) at SE = 0, [-3.161, -3.129. -3.3001 
at SE = -2t and (-4.770, -4.375, -4.8433 at SE = -4f. For the same systems in the AF 
state the spin densities on the cluster are 280 = 0.578, 0.864, 0.954 for SE = 0, -2 or 
-4t respectively (SO is determined by equation (42)). For the undoped system, 280 + 1 
along with the increase of IS&[, i.e. the correlated AF state approaches the state of localized 
type with alternating spins. Another athibute of the hole localization is the decrease of the 
second derivatives of energy over U ,  U at the optimal values 01, U, U for the AF state with 
increase of U,+ All the above are in line with the result of second-order consideration of 
the cell perturbation approach [19,20] based on the localized states. 

For an undoped insulator the value of the gap in the one-particle spectrum of the 
linearized Hamiltonian of the AFtPM state is considerably less than the similar gap obtained 
for the AF State qAF(ly = U = U y )  without PM correlations at y providing the minimum 
of H ( y )  (see figure 4). However, the actual states of extra holes and excitations may differ 
from those of the linearized Hamiltonian, and special study of the problem is needed. 

Now we use the correlated variational function of the form (1) to study the doped system 
with hole concentration n > 1. Such metal-like systems are the most difficult ones to study 
by the standard 114-181 or even improved [19,20] perturbation methods, since for this case 
it is difficult to validate any simple choice of the ground manifold in perturbation analysis. 
At the same time the transformed band approach remains adequate in the case of doping. 
The calculations have been done for the PM state (34) and for the similar AF+PM one. The 
latter corresponds to the double magnetic unit cell. 

The difference in energies of the AF and PM states appears to be small in comparison 
with the energy of the intercluster charge transfer A E  = (Eo+Ez-2Et). At the same time 
the gap in the one-particle spectrum of linearized Hamiltonian is sufficiently large (figure 4). 
In the above approximation the phase transition from AF to PM state occurs at n Y 1.2 or 
1.4 for SE = 0 or -2t. 

Figure 5 presents the doping dependence of SO and of the probabilities PT = p i  - Si and 
PO = (1 - p ~ ) ~  - So" of the double-hole or empty clusters. The value 260 is the staggered 
spin density on clusters. The values Pz and PO show the degree of hole localization and of 
intercluster charge fluctuations. The weight PI of the single-hole clusters differs from unity 
even for the undoped case: PI = 0.667 or 0.875 at SE = 0 or -2t. 

6. Conclusions 

The method of unitary transformations seems to be very useful for constructing the correlated 
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-0.5??13 ' 1 : I  ' 1 : 2  ' 1 :3 ' 1 :4 ' I!S 
n 

Figure 5. The doping dependences of 60 (E DO). half of the spin density on clusler. and the 
weighu of the empty and double-hole dusters PI) and P2 (= PO and P2) at Ud/f = 7. ep = 0, 
Bmkcn and full curyes refer to E& = 0 or -2 respectively. 

ground state of multicomponent systems at sufficiently high density (up to n < 1.5). It 
allows us to take into account two important physical features of strongly correlated systems, 
namely, the localization of holes on lower orbitals of clusters and the band character 
of the hole carriers displaying significant charge fluctuations. The proposed variational 
correlated wavefunction possesses correct permutative and translational symmetry. Similar 
to Gutzwiller's a n ~ n t ~  it describes the local paramagnetic correlations, but the unitarily 
of the transformation permits us to calculate the ground-state energy without any further 
approximation, which is needed in Gutzwiller's approach. The PM correlations are described 
by the operators of the generalized p-d hybridization depending on the number of holes 
on clusters (each cluster with one strongly correlated d orbital and appropriate Wannier 
combination of the p orbitals). The PM correlations suppress considerably the probabilities 
of double occupancy of d orbitals. 

Consideration of the undoped antiferromagnetic state of the simplified Emery model of 
the CuOz plane confirms the ideas about its ground state arising from the cell perturbation 
method [19,211: the holes appear to be localized on the lower hybrid orbitals of clusters 
rather than on the copper site. The variational method determines the degree of localization 
in a self-consistent non-perturbalive way. For the undoped case the coexistence of the 
PM and AF correlations is proved and the PM correlations lead to a considerable decrease 
of the dielectric gap, The transition from AF to PM state with doping can be described 
by the method. Unlike other approaches, the method of optimal unitary transformations 
provides well founded correlated hopping terms in the modified Hamiltonian and therefore 
the method can be used to study the possibility of superconductivity of kinematic nature. 
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Appendix. Unitary transformations and transforfned operators 

To obtain the explicit expressions of the operators Wj = exp(Zi) it is convenienf to €ewr+fe 
equations (9)-( 11) via the Hubbard operators 

z3 = B C ( D ~ . ~ + ~ A ~ + ~ . ~  - A ~ . ~ + ~ D ~ + ~ . ~ ~  (A3) 
n 

where a = I ,  2 correspond to the up and down spin projections, A = I ,  2, and 

c0 = ~1 at u = 1 , 2  CA = ~ l , p ~ = u .  U at A = 1,2. (A41 

Using equations (7) one can verify that 

(Z;)Z" = (ci)2"-2(-1)"(zi)2 (z;)"+' = (-I)"(ci)2"+'zi 
('45) 

Ci = [or. r ,  ,!?]i, i = 1 , 2 , 3  r = [2(u2 + U')]"'. 
A summation of all degrees of Zi in exp(Z;) leads to 

Wl = I + (cosor - l ) ~ ( D I I A ~ + n . ~ + n  + A I I D z + , z ~ )  + (sinor/a)Z~ (A6) 
c 

Wz = I + (cos r - 1) ~ ~ A ~ D A ~ ~ A ~ - A . ~ - A ~  + C ~", ,D~+", z+~ ,As -" , s -" ,  

fA7) 

(A@ 

( h.Y il.n 

w3 = I + (cosB - 1) ~ ( D z ~ A ~ + ~ . z + . ,  + A z z ~ + ~ . z + ~ )  + @in B/B)G 
0 

The transformed elements of the original Hamiltonian (15), (16) are now easily obtained 
(the cell index n is omitted here): 

n a  fi: - i: = Konz + Kjn,n_, -d + n, = n: 

E, = (OU,  + h a &  & = VOU, +nla&, W O )  
I;d - EdEd iiz& = h &  + h~ntn! , ,  - -" = vn:nY,. 
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All coeflicients are expressed via parameters a, U ,  U: 

A A Ovchinnikov and M Ya Ovchinnikova 

Here s, = sina, c. = cosa ,  C, = -1  + cosr. S, = (ujr)sinr, and r ,  rj, are defined by 
equations (A5) and (A9). Using equations (AIO) one obtains the transformed Hamiltonian 
(24). At a = U = U one has hl = = 111 = K I  = 0 and kinematic interactions of the 
correlation nature in the Hamiltonian are removed. 
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